

 Navigation

 	
 index

 	
 next |

 	hyperledger-fabric-cadocs master documentation

Welcome to Hyperledger Fabric CA (Certificate Authority)

This build of the docs is from the “master” branch

Getting Started

	Fabric CA User’s Guide
	Table of Contents

	Overview

	Getting Started

	Fabric CA Server

	Fabric CA Client

	HSM

	File Formats

	Troubleshooting

 Copyright 2017, hyperledger.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 previous |

 	hyperledger-fabric-cadocs master documentation

Fabric CA User’s Guide

The Hyperledger Fabric CA is a Certificate Authority (CA)
for Hyperledger Fabric.

It provides features such as:

	registration of identities, or connects to LDAP as the user
registry

	issuance of Enrollment Certificates (ECerts)

	certificate renewal and revocation

Hyperledger Fabric CA consists of both a server and a client component as
described later in this document.

For developers interested in contributing to Hyperledger Fabric CA, see the
Fabric CA repository [https://github.com/hyperledger/fabric-ca] for more
information.

Table of Contents

	Overview

	Getting Started
	Prerequisites

	Install

	Explore the Fabric CA CLI

	Configuration Settings
	A word on file paths

	Fabric CA Server
	Initializing the server

	Starting the server

	Configuring the database

	Configuring LDAP

	Setting up a cluster

	Setting up multiple CAs

	Enrolling an intermediate CA

	Upgrading the server

	Fabric CA Client
	Enrolling the bootstrap identity

	Registering a new identity

	Enrolling a peer identity

	Getting a CA certificate chain from another Fabric CA server

	Reenrolling an identity

	Revoking a certificate or identity

	Generating a CRL (Certificate Revocation List)

	Attribute-Based Access Control

	Dynamic Server Configuration Update

	Enabling TLS

	Contact specific CA instance

	HSM
	Configuring Fabric CA server to use softhsm2

	File Formats
	Fabric CA server’s configuration file format

	Fabric CA client’s configuration file format

	Troubleshooting

Overview

The diagram below illustrates how the Hyperledger Fabric CA server fits into the
overall Hyperledger Fabric architecture.

[image: _images/fabric-ca.png]
There are two ways of interacting with a Hyperledger Fabric CA server:
via the Hyperledger Fabric CA client or through one of the Fabric SDKs.
All communication to the Hyperledger Fabric CA server is via REST APIs.
See fabric-ca/swagger/swagger-fabric-ca.json for the swagger documentation
for these REST APIs.
You may view this documentation via the http://editor2.swagger.io online editor.

The Hyperledger Fabric CA client or SDK may connect to a server in a cluster
of Hyperledger Fabric CA servers. This is illustrated in the top right section
of the diagram. The client routes to an HA Proxy endpoint which load balances
traffic to one of the fabric-ca-server cluster members.

All Hyperledger Fabric CA servers in a cluster share the same database for
keeping track of identities and certificates. If LDAP is configured, the identity
information is kept in LDAP rather than the database.

A server may contain multiple CAs. Each CA is either a root CA or an
intermediate CA. Each intermediate CA has a parent CA which is either a
root CA or another intermediate CA.

Getting Started

Prerequisites

	Go 1.9+ installation

	GOPATH environment variable is set correctly

	libtool and libtdhl-dev packages are installed

The following installs the libtool dependencies on Ubuntu:

sudo apt install libtool libltdl-dev

The following installs the libtool dependencies on MacOSX:

brew install libtool

Note

libtldl-dev is not necessary on MacOSX if you instal
libtool via Homebrew

For more information on libtool, see https://www.gnu.org/software/libtool.

For more information on libltdl-dev, see https://www.gnu.org/software/libtool/manual/html_node/Using-libltdl.html.

Install

The following installs both the fabric-ca-server and fabric-ca-client binaries
in $GOPATH/bin.

go get -u github.com/hyperledger/fabric-ca/cmd/...

Note: If you have already cloned the fabric-ca repository, make sure you are on the
master branch before running the ‘go get’ command above. Otherwise, you might see the
following error:

<gopath>/src/github.com/hyperledger/fabric-ca; git pull --ff-only
There is no tracking information for the current branch.
Please specify which branch you want to merge with.
See git-pull(1) for details.

 git pull <remote> <branch>

If you wish to set tracking information for this branch you can do so with:

 git branch --set-upstream-to=<remote>/<branch> tlsdoc

package github.com/hyperledger/fabric-ca/cmd/fabric-ca-client: exit status 1

Start Server Natively

The following starts the fabric-ca-server with default settings.

fabric-ca-server start -b admin:adminpw

The -b option provides the enrollment ID and secret for a bootstrap
administrator; this is required if LDAP is not enabled with the “ldap.enabled”
setting.

A default configuration file named fabric-ca-server-config.yaml
is created in the local directory which can be customized.

Start Server via Docker

Docker Hub

Go to: https://hub.docker.com/r/hyperledger/fabric-ca/tags/

Find the tag that matches the architecture and version of fabric-ca
that you want to pull.

Navigate to $GOPATH/src/github.com/hyperledger/fabric-ca/docker/server
and open up docker-compose.yml in an editor.

Change the image line to reflect the tag you found previously. The file
may look like this for an x86 architecture for version beta.

fabric-ca-server:
 image: hyperledger/fabric-ca:x86_64-1.0.0-beta
 container_name: fabric-ca-server
 ports:
 - "7054:7054"
 environment:
 - FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server
 volumes:
 - "./fabric-ca-server:/etc/hyperledger/fabric-ca-server"
 command: sh -c 'fabric-ca-server start -b admin:adminpw'

Open up a terminal in the same directory as the docker-compose.yml file
and execute the following:

docker-compose up -d

This will pull down the specified fabric-ca image in the compose file
if it does not already exist, and start an instance of the fabric-ca
server.

Building Your Own Docker image

You can build and start the server via docker-compose as shown below.

cd $GOPATH/src/github.com/hyperledger/fabric-ca
make docker
cd docker/server
docker-compose up -d

The hyperledger/fabric-ca docker image contains both the fabric-ca-server and
the fabric-ca-client.

cd $GOPATH/src/github.com/hyperledger/fabric-ca
FABRIC_CA_DYNAMIC_LINK=true make docker
cd docker/server
docker-compose up -d

Explore the Fabric CA CLI

This section simply provides the usage messages for the Fabric CA server and client
for convenience. Additional usage information is provided in following sections.

The following links shows the Server Command Line and
Client Command Line.

Note

Note that command line options that are string slices (lists) can be
specified either by specifying the option with comma-separated list
elements or by specifying the option multiple times, each with a
string value that make up the list. For example, to specify
host1 and host2 for the csr.hosts option, you can either
pass --csr.hosts 'host1,host2' or
--csr.hosts host1 --csr.hosts host2. When using the former format,
please make sure there are no space before or after any commas.

Back to Top

Configuration Settings

The Fabric CA provides 3 ways to configure settings on the Fabric CA server
and client. The precedence order is:

	CLI flags

	Environment variables

	Configuration file

In the remainder of this document, we refer to making changes to
configuration files. However, configuration file changes can be
overridden through environment variables or CLI flags.

For example, if we have the following in the client configuration file:

tls:
 # Enable TLS (default: false)
 enabled: false

 # TLS for the client's listenting port (default: false)
 certfiles:
 client:
 certfile: cert.pem
 keyfile:

The following environment variable may be used to override the cert.pem
setting in the configuration file:

export FABRIC_CA_CLIENT_TLS_CLIENT_CERTFILE=cert2.pem

If we wanted to override both the environment variable and configuration
file, we can use a command line flag.

fabric-ca-client enroll --tls.client.certfile cert3.pem

The same approach applies to fabric-ca-server, except instead of using
FABIRC_CA_CLIENT as the prefix to environment variables,
FABRIC_CA_SERVER is used.

A word on file paths

All the properties in the Fabric CA server and client configuration file
that specify file names support both relative and absolute paths.
Relative paths are relative to the config directory, where the
configuration file is located. For example, if the config directory is
~/config and the tls section is as shown below, the Fabric CA server
or client will look for the root.pem file in the ~/config
directory, cert.pem file in the ~/config/certs directory and the
key.pem file in the /abs/path directory

tls:
 enabled: true
 certfiles:
 - root.pem
 client:
 certfile: certs/cert.pem
 keyfile: /abs/path/key.pem

Back to Top

Fabric CA Server

This section describes the Fabric CA server.

You may initialize the Fabric CA server before starting it. This provides an
opportunity for you to generate a default configuration file that can be
reviewed and customized before starting the server.

	The Fabric CA server’s home directory is determined as follows:

	
	if the –home command line option is set, use its value

	otherwise, if the FABRIC_CA_SERVER_HOME environment variable is set, use
its value

	otherwise, if FABRIC_CA_HOME environment variable is set, use
its value

	otherwise, if the CA_CFG_PATH environment variable is set, use
its value

	otherwise, use current working directory

For the remainder of this server section, we assume that you have set
the FABRIC_CA_HOME environment variable to
$HOME/fabric-ca/server.

The instructions below assume that the server configuration file exists
in the server’s home directory.

Initializing the server

Initialize the Fabric CA server as follows:

fabric-ca-server init -b admin:adminpw

The -b (bootstrap identity) option is required for initialization when
LDAP is disabled. At least one bootstrap identity is required to start the
Fabric CA server; this identity is the server administrator.

The server configuration file contains a Certificate Signing Request (CSR)
section that can be configured. The following is a sample CSR.

cn: fabric-ca-server
names:
 - C: US
 ST: "North Carolina"
 L:
 O: Hyperledger
 OU: Fabric
hosts:
 - host1.example.com
 - localhost
ca:
 expiry: 131400h
 pathlength: 1

All of the fields above pertain to the X.509 signing key and certificate which
is generated by the fabric-ca-server init. This corresponds to the
ca.certfile and ca.keyfile files in the server’s configuration file.
The fields are as follows:

	cn is the Common Name

	O is the organization name

	OU is the organizational unit

	L is the location or city

	ST is the state

	C is the country

If custom values for the CSR are required, you may customize the configuration
file, delete the files specified by the ca.certfile and ca.keyfile
configuration items, and then run the fabric-ca-server init -b admin:adminpw
command again.

The fabric-ca-server init command generates a self-signed CA certificate
unless the -u <parent-fabric-ca-server-URL> option is specified.
If the -u is specified, the server’s CA certificate is signed by the
parent Fabric CA server.
In order to authenticate to the parent Fabric CA server, the URL must
be of the form <scheme>://<enrollmentID>:<secret>@<host>:<port>, where
<enrollmentID> and <secret> correspond to an identity with an ‘hf.IntermediateCA’
attribute whose value equals ‘true’.
The fabric-ca-server init command also generates a default configuration
file named fabric-ca-server-config.yaml in the server’s home directory.

If you want the Fabric CA server to use a CA signing certificate and key file which you provide,
you must place your files in the location referenced by ca.certfile and ca.keyfile respectively.
Both files must be PEM-encoded and must not be encrypted.
More specifically, the contents of the CA certificate file must begin with -----BEGIN CERTIFICATE-----
and the contents of the key file must begin with -----BEGIN PRIVATE KEY----- and not
-----BEGIN ENCRYPTED PRIVATE KEY-----.

Algorithms and key sizes

The CSR can be customized to generate X.509 certificates and keys that
support Elliptic Curve (ECDSA). The following setting is an
example of the implementation of Elliptic Curve Digital Signature
Algorithm (ECDSA) with curve prime256v1 and signature algorithm
ecdsa-with-SHA256:

key:
 algo: ecdsa
 size: 256

The choice of algorithm and key size are based on security needs.

Elliptic Curve (ECDSA) offers the following key size options:

	size
	ASN1 OID
	Signature Algorithm

	256
	prime256v1
	ecdsa-with-SHA256

	384
	secp384r1
	ecdsa-with-SHA384

	521
	secp521r1
	ecdsa-with-SHA512

Starting the server

Start the Fabric CA server as follows:

fabric-ca-server start -b <admin>:<adminpw>

If the server has not been previously initialized, it will initialize
itself as it starts for the first time. During this initialization, the
server will generate the ca-cert.pem and ca-key.pem files if they don’t
yet exist and will also create a default configuration file if it does
not exist. See the Initialize the Fabric CA server section.

Unless the Fabric CA server is configured to use LDAP, it must be
configured with at least one pre-registered bootstrap identity to enable you
to register and enroll other identities. The -b option specifies the
name and password for a bootstrap identity.

To cause the Fabric CA server to listen on https rather than
http, set tls.enabled to true.

SECURITY WARNING: The Fabric CA server should always be started with TLS
enabled (tls.enabled set to true). Failure to do so leaves the
server vulnerable to an attacker with access to network traffic.

To limit the number of times that the same secret (or password) can be
used for enrollment, set the registry.maxenrollments in the configuration
file to the appropriate value. If you set the value to 1, the Fabric CA
server allows passwords to only be used once for a particular enrollment
ID. If you set the value to -1, the Fabric CA server places no limit on
the number of times that a secret can be reused for enrollment. The
default value is -1. Setting the value to 0, the Fabric CA server will
disable enrollment for all identities and registration of identities will
not be allowed.

The Fabric CA server should now be listening on port 7054.

You may skip to the Fabric CA Client section if
you do not want to configure the Fabric CA server to run in a cluster or
to use LDAP.

Configuring the database

This section describes how to configure the Fabric CA server to connect
to PostgreSQL or MySQL databases. The default database is SQLite and the
default database file is fabric-ca-server.db in the Fabric CA
server’s home directory.

If you don’t care about running the Fabric CA server in a cluster, you
may skip this section; otherwise, you must configure either PostgreSQL or
MySQL as described below. Fabric CA supports the following database
versions in a cluster setup:

	PostgreSQL: 9.5.5 or later

	MySQL: 5.7 or later

PostgreSQL

The following sample may be added to the server’s configuration file in
order to connect to a PostgreSQL database. Be sure to customize the
various values appropriately. There are limitations on what characters are allowed
in the database name. Please refer to the following Postgres documentation
for more information: https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

db:
 type: postgres
 datasource: host=localhost port=5432 user=Username password=Password dbname=fabric_ca sslmode=verify-full

Specifying sslmode configures the type of SSL authentication. Valid
values for sslmode are:

	Mode
	Description

	disable
	No SSL

	require
	Always SSL
(skip
verification)

	verify-ca
	Always SSL
(verify that
the
certificate
presented by
the server was
signed by a
trusted CA)

	verify-full
	Same as
verify-ca AND
verify that
the
certificate
presented by
the server was
signed by a
trusted CA and
the server
hostname
matches the
one in the
certificate

If you would like to use TLS, then the db.tls section in the Fabric CA server
configuration file must be specified. If SSL client authentication is enabled
on the PostgreSQL server, then the client certificate and key file must also be
specified in the db.tls.client section. The following is an example
of the db.tls section:

db:
 ...
 tls:
 enabled: true
 certfiles:
 - db-server-cert.pem
 client:
 certfile: db-client-cert.pem
 keyfile: db-client-key.pem

certfiles - A list of PEM-encoded trusted root certificate files.

certfile and keyfile - PEM-encoded certificate and key files that are used by the Fabric CA server to communicate securely with the PostgreSQL server

PostgreSQL SSL Configuration

Basic instructions for configuring SSL on the PostgreSQL server:

	In postgresql.conf, uncomment SSL and set to “on” (SSL=on)

	Place certificate and key files in the PostgreSQL data directory.

Instructions for generating self-signed certificates for:
https://www.postgresql.org/docs/9.5/static/ssl-tcp.html

Note: Self-signed certificates are for testing purposes and should not
be used in a production environment

PostgreSQL Server - Require Client Certificates

	Place certificates of the certificate authorities (CAs) you trust in the file root.crt in the PostgreSQL data directory

	In postgresql.conf, set “ssl_ca_file” to point to the root cert of the client (CA cert)

	Set the clientcert parameter to 1 on the appropriate hostssl line(s) in pg_hba.conf.

For more details on configuring SSL on the PostgreSQL server, please refer
to the following PostgreSQL documentation:
https://www.postgresql.org/docs/9.4/static/libpq-ssl.html

MySQL

The following sample may be added to the Fabric CA server configuration file in
order to connect to a MySQL database. Be sure to customize the various
values appropriately. There are limitations on what characters are allowed
in the database name. Please refer to the following MySQL documentation
for more information: https://dev.mysql.com/doc/refman/5.7/en/identifiers.html

On MySQL 5.7.X, certain modes affect whether the server permits ‘0000-00-00’ as a valid date.
It might be necessary to relax the modes that MySQL server uses. We want to allow
the server to be able to accept zero date values.

In my.cnf, find the configuration option sql_mode and remove NO_ZERO_DATE if present.
Restart MySQL server after making this change.

Please refer to the following MySQL documentation on different modes available
and select the appropriate settings for the specific version of MySQL that is
being used.

https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html

db:
 type: mysql
 datasource: root:rootpw@tcp(localhost:3306)/fabric_ca?parseTime=true&tls=custom

If connecting over TLS to the MySQL server, the db.tls.client
section is also required as described in the PostgreSQL section above.

MySQL SSL Configuration

Basic instructions for configuring SSL on MySQL server:

	Open or create my.cnf file for the server. Add or uncomment the
lines below in the [mysqld] section. These should point to the key and
certificates for the server, and the root CA cert.

Instructions on creating server and client-side certficates:
http://dev.mysql.com/doc/refman/5.7/en/creating-ssl-files-using-openssl.html

[mysqld] ssl-ca=ca-cert.pem ssl-cert=server-cert.pem ssl-key=server-key.pem

Can run the following query to confirm SSL has been enabled.

mysql> SHOW GLOBAL VARIABLES LIKE ‘have_%ssl’;

Should see:

	Variable_name
	Value

	have_openssl
	YES

	have_ssl
	YES

	After the server-side SSL configuration is finished, the next step is
to create a user who has a privilege to access the MySQL server over
SSL. For that, log in to the MySQL server, and type:

mysql> GRANT ALL PRIVILEGES ON . TO ‘ssluser’@’%’ IDENTIFIED BY
‘password’ REQUIRE SSL; mysql> FLUSH PRIVILEGES;

If you want to give a specific IP address from which the user will
access the server change the ‘%’ to the specific IP address.

MySQL Server - Require Client Certificates

Options for secure connections are similar to those used on the server side.

	ssl-ca identifies the Certificate Authority (CA) certificate. This
option, if used, must specify the same certificate used by the server.

	ssl-cert identifies MySQL server’s certificate.

	ssl-key identifies MySQL server’s private key.

Suppose that you want to connect using an account that has no special
encryption requirements or was created using a GRANT statement that
includes the REQUIRE SSL option. As a recommended set of
secure-connection options, start the MySQL server with at least
–ssl-cert and –ssl-key options. Then set the db.tls.certfiles property
in the server configuration file and start the Fabric CA server.

To require that a client certificate also be specified, create the
account using the REQUIRE X509 option. Then the client must also specify
proper client key and certificate files; otherwise, the MySQL server
will reject the connection. To specify client key and certificate files
for the Fabric CA server, set the db.tls.client.certfile,
and db.tls.client.keyfile configuration properties.

Configuring LDAP

The Fabric CA server can be configured to read from an LDAP server.

In particular, the Fabric CA server may connect to an LDAP server to do
the following:

	authenticate an identity prior to enrollment

	retrieve an identity’s attribute values which are used for authorization.

Modify the LDAP section of the Fabric CA server’s configuration file to configure the
server to connect to an LDAP server.

ldap:
 # Enables or disables the LDAP client (default: false)
 enabled: false
 # The URL of the LDAP server
 url: <scheme>://<adminDN>:<adminPassword>@<host>:<port>/<base>
 userfilter: <filter>
 attribute:
 # 'names' is an array of strings that identify the specific attributes
 # which are requested from the LDAP server.
 names: <LDAPAttrs>
 # The 'converters' section is used to convert LDAP attribute values
 # to fabric CA attribute values.
 #
 # For example, the following converts an LDAP 'uid' attribute
 # whose value begins with 'revoker' to a fabric CA attribute
 # named "hf.Revoker" with a value of "true" (because the expression
 # evaluates to true).
 # converters:
 # - name: hf.Revoker
 # value: attr("uid") =~ "revoker*"
 #
 # As another example, assume a user has an LDAP attribute named
 # 'member' which has multiple values of "dn1", "dn2", and "dn3".
 # Further assume the following configuration.
 # converters:
 # - name: myAttr
 # value: map(attr("member"),"groups")
 # maps:
 # groups:
 # - name: dn1
 # value: orderer
 # - name: dn2
 # value: peer
 # The value of the user's 'myAttr' attribute is then computed to be
 # "orderer,peer,dn3". This is because the value of 'attr("member")' is
 # "dn1,dn2,dn3", and the call to 'map' with a 2nd argument of
 # "group" replaces "dn1" with "orderer" and "dn2" with "peer".
 converters:
 - name: <fcaAttrName>
 value: <fcaExpr>
 maps:
 <mapName>:
 - name: <from>
 value: <to>

Where:

	scheme is one of ldap or ldaps;

	adminDN is the distinquished name of the admin user;

	pass is the password of the admin user;

	host is the hostname or IP address of the LDAP server;

	port is the optional port number, where default 389 for ldap
and 636 for ldaps;

	base is the optional root of the LDAP tree to use for searches;

	filter is a filter to use when searching to convert a login
user name to a distinguished name. For example, a value of
(uid=%s) searches for LDAP entries with the value of a uid
attribute whose value is the login user name. Similarly,
(email=%s) may be used to login with an email address.

	LDAPAttrs is an array of LDAP attribute names to request from the
LDAP server on a user’s behalf;

	the attribute.converters section is used to convert LDAP attributes to fabric
CA attributes, where
* fcaAttrName is the name of a fabric CA attribute;
* fcaExpr is an expression whose evaluated value is assigned to the fabric CA attribute.
For example, suppose that <LDAPAttrs> is [“uid”], <fcaAttrName> is ‘hf.Revoker’,
and <fcaExpr> is ‘attr(“uid”) =~ “revoker*”’. This means that an attribute
named “uid” is requested from the LDAP server on a user’s behalf. The user is
then given a value of ‘true’ for the ‘hf.Revoker’ attribute if the value of
the user’s ‘uid’ LDAP attribute begins with ‘revoker’; otherwise, the user
is given a value of ‘false’ for the ‘hf.Revoker’ attribute.

	the attribute.maps section is used to map LDAP response values. The typical
use case is to map a distinguished name associated with an LDAP group to an
identity type.

The LDAP expression language uses the govaluate package as described at
https://github.com/Knetic/govaluate/blob/master/MANUAL.md. This defines
operators such as “=~” and literals such as “revoker*”, which is a regular
expression. The LDAP-specific variables and functions which extend the
base govaluate language are as follows:

	DN is a variable equal to the user’s distinguished name.

	affiliation is a variable equal to the user’s affiliation.

	attr is a function which takes 1 or 2 arguments. The 1st argument
is an LDAP attribute name. The 2nd argument is a separator string which is
used to join multiple values into a single string; the default separator
string is ”,”. The attr function always returns a value of type
‘string’.

	map is a function which takes 2 arguments. The 1st argument
is any string. The second argument is the name of a map which is used to
perform string substitution on the string from the 1st argument.

	if is a function which takes a 3 arguments where the first argument
must resolve to a boolean value. If it evaluates to true, the second
argument is returned; otherwise, the third argument is returned.

For example, the following expression evaluates to true if the user has
a distinguished name ending in “O=org1,C=US”, or if the user has an affiliation
beginning with “org1.dept2.” and also has the “admin” attribute of “true”.

DN =~ “*O=org1,C=US” || (affiliation =~ “org1.dept2.*” && attr(‘admin’) = ‘true’)

NOTE: Since the attr function always returns a value of type ‘string’,
numeric operators may not be used to construct expressions.
For example, the following is NOT a valid expression:

value: attr("gidNumber) >= 10000 && attr("gidNumber) < 10006

Alternatively, a regular expression enclosed in quotes as shown below may be used
to return an equivalent result:

value: attr("gidNumber") =~ "1000[0-5]$" || attr("mail") == "root@example.com"

The following is a sample configuration section for the default setting
for the OpenLDAP server whose docker image is at
https://github.com/osixia/docker-openldap.

ldap:
 enabled: true
 url: ldap://cn=admin,dc=example,dc=org:admin@localhost:10389/dc=example,dc=org
 userfilter: (uid=%s)

See FABRIC_CA/scripts/run-ldap-tests for a script which starts an
OpenLDAP docker image, configures it, runs the LDAP tests in
FABRIC_CA/cli/server/ldap/ldap_test.go, and stops the OpenLDAP
server.

When LDAP is configured, enrollment works as follows:

	The Fabric CA client or client SDK sends an enrollment request with a
basic authorization header.

	The Fabric CA server receives the enrollment request, decodes the
identity name and password in the authorization header, looks up the DN (Distinguished
Name) associated with the identity name using the “userfilter” from the
configuration file, and then attempts an LDAP bind with the identity’s
password. If the LDAP bind is successful, the enrollment processing is
authorized and can proceed.

Setting up a cluster

You may use any IP sprayer to load balance to a cluster of Fabric CA
servers. This section provides an example of how to set up Haproxy to
route to a Fabric CA server cluster. Be sure to change hostname and port
to reflect the settings of your Fabric CA servers.

haproxy.conf

global
 maxconn 4096
 daemon

defaults
 mode http
 maxconn 2000
 timeout connect 5000
 timeout client 50000
 timeout server 50000

listen http-in
 bind *:7054
 balance roundrobin
 server server1 hostname1:port
 server server2 hostname2:port
 server server3 hostname3:port

Note: If using TLS, need to use mode tcp.

Setting up multiple CAs

The fabric-ca server by default consists of a single default CA. However, additional CAs
can be added to a single server by using cafiles or cacount configuration options.
Each additional CA will have its own home directory.

cacount:

The cacount provides a quick way to start X number of default additional
CAs. The home directory will be relative to the server directory. With this option,
the directory structure will be as follows:

--<Server Home>
 |--ca
 |--ca1
 |--ca2

Each additional CA will get a default configuration file generated in it’s home
directory, within the configuration file it will contain a unique CA name.

For example, the following command will start 2 default CA instances:

fabric-ca-server start -b admin:adminpw --cacount 2

cafiles:

If absolute paths are not provided when using the cafiles configuration option,
the CA home directory will be relative to the server directory.

To use this option, CA configuration files must have already been generated and
configured for each CA that is to be started. Each configuration file must have
a unique CA name and Common Name (CN), otherwise the server will fail to start as these
names must be unique. The CA configuration files will override any default
CA configuration, and any missing options in the CA configuration files will be
replaced by the values from the default CA.

The precedence order will be as follows:

	CA Configuration file

	Default CA CLI flags

	Default CA Environment variables

	Default CA Configuration file

A CA configuration file must contain at least the following:

ca:
Name of this CA
name: <CANAME>

csr:
 cn: <COMMONNAME>

You may configure your directory structure as follows:

--<Server Home>
 |--ca
 |--ca1
 |-- fabric-ca-config.yaml
 |--ca2
 |-- fabric-ca-config.yaml

For example, the following command will start two customized CA instances:

fabric-ca-server start -b admin:adminpw --cafiles ca/ca1/fabric-ca-config.yaml
--cafiles ca/ca2/fabric-ca-config.yaml

Enrolling an intermediate CA

In order to create a CA signing certificate for an intermediate CA, the intermediate
CA must enroll with a parent CA in the same way that a fabric-ca-client enrolls with a CA.
This is done by using the -u option to specify the URL of the parent CA and the enrollment ID
and secret as shown below. The identity associated with this enrollment ID must have an
attribute with a name of “hf.IntermediateCA” and a value of “true”. The CN (or Common Name)
of the issued certificate will be set to the enrollment ID. An error will occur if an intermediate
CA tries to explicitly specify a CN value.

fabric-ca-server start -b admin:adminpw -u http://<enrollmentID>:<secret>@<parentserver>:<parentport>

For other intermediate CA flags see Fabric CA server’s configuration file format section.

Upgrading the server

The Fabric CA server must be upgraded before upgrading the Fabric CA client.
Prior to upgrade, it is suggested that the current database be backed up:

	If using sqlite3, backup the current database file (which is named fabric-ca-server.db by default).

	For other database types, use the appropriate backup/replication mechanism.

To upgrade a single instance of Fabric CA server:

	Stop the fabric-ca-server process.

	Ensure the current database is backed up.

	Replace previous fabric-ca-server binary with the upgraded version.

	Launch the fabric-ca-server process.

	Verify the fabric-ca-server process is available with the following
command where <host> is the hostname on which the server was started:

fabric-ca-client getcainfo -u http://<host>:7054

Upgrading a cluster:

To upgrade a cluster of fabric-ca-server instances using either a MySQL or Postgres database, perform the following procedure. We assume that you are using haproxy to load balance to two fabric-ca-server cluster members on host1 and host2, respectively, both listening on port 7054. After this procedure, you will be load balancing to upgraded fabric-ca-server cluster members on host3 and host4 respectively, both listening on port 7054.

In order to monitor the changes using haproxy stats, enable statistics collection. Add the following lines to the global section of the haproxy configuration file:

stats socket /var/run/haproxy.sock mode 666 level operator
stats timeout 2m

Restart haproxy to pick up the changes:

haproxy -f <configfile> -st $(pgrep haproxy)

To display summary information from the haproxy “show stat” command, the following function may prove useful for parsing the copious amount of CSV data returned:

haProxyShowStats() {
 echo "show stat" | nc -U /var/run/haproxy.sock |sed '1s/^# *//'|
 awk -F',' -v fmt="%4s %12s %10s %6s %6s %4s %4s\n" '
 { if (NR==1) for (i=1;i<=NF;i++) f[tolower($i)]=i }
 { printf fmt, $f["sid"],$f["pxname"],$f["svname"],$f["status"],
 $f["weight"],$f["act"],$f["bck"] }'
}

	Initially your haproxy configuration file is similar to the following:

server server1 host1:7054 check
server server2 host2:7054 check

Change this configuration to the following:

server server1 host1:7054 check backup
server server2 host2:7054 check backup
server server3 host3:7054 check
server server4 host4:7054 check

	Restart the HA proxy with the new configuration as follows:

haproxy -f <configfile> -st $(pgrep haproxy)

"haProxyShowStats" will now reflect the modified configuration,
with two active, older-version backup servers and two (yet to be started) upgraded servers:

sid pxname svname status weig act bck
 1 fabric-cas server3 DOWN 1 1 0
 2 fabric-cas server4 DOWN 1 1 0
 3 fabric-cas server1 UP 1 0 1
 4 fabric-cas server2 UP 1 0 1

	Install upgraded binaries of fabric-ca-server on host3 and host4. The new
upgraded servers on host3 and host4 should be configured to use the same
database as their older counterparts on host1 and host2. After starting
the upgraded servers, the database will be automatically migrated. The
haproxy will forward all new traffic to the upgraded servers, since they
are not configured as backup servers. Verify using the "fabric-ca-client getcainfo"
command that your cluster is still functioning appropriately before proceeding.
Also, "haProxyShowStats" should now reflect that all servers are active,
similar to the following:

sid pxname svname status weig act bck
 1 fabric-cas server3 UP 1 1 0
 2 fabric-cas server4 UP 1 1 0
 3 fabric-cas server1 UP 1 0 1
 4 fabric-cas server2 UP 1 0 1

	Stop the old servers on host1 and host2. Verify using the
"fabric-ca-client getcainfo" command that your new cluster is still
functioning appropriately before proceeding. Then remove the older
server backup configuration from the haproxy configuration file,
so that it looks similar to the following:

server server3 host3:7054 check
server server4 host4:7054 check

	Restart the HA proxy with the new configuration as follows:

haproxy -f <configfile> -st $(pgrep haproxy)

"haProxyShowStats" will now reflect the modified configuration,
with two active servers which have been upgraded to the new version:

sid pxname svname status weig act bck
 1 fabric-cas server3 UP 1 1 0
 2 fabric-cas server4 UP 1 1 0

Back to Top

Fabric CA Client

This section describes how to use the fabric-ca-client command.

	The Fabric CA client’s home directory is determined as follows:

	
	if the –home command line option is set, use its value

	otherwise, if the FABRIC_CA_CLIENT_HOME environment variable is set, use
its value

	otherwise, if the FABRIC_CA_HOME environment variable is set,
use its value

	otherwise, if the CA_CFG_PATH environment variable is set, use
its value

	otherwise, use $HOME/.fabric-ca-client

The instructions below assume that the client configuration file exists
in the client’s home directory.

Enrolling the bootstrap identity

First, if needed, customize the CSR (Certificate Signing Request) section
in the client configuration file. Note that csr.cn field must be set
to the ID of the bootstrap identity. Default CSR values are shown below:

csr:
 cn: <<enrollment ID>>
 key:
 algo: ecdsa
 size: 256
 names:
 - C: US
 ST: North Carolina
 L:
 O: Hyperledger Fabric
 OU: Fabric CA
 hosts:
 - <<hostname of the fabric-ca-client>>
 ca:
 pathlen:
 pathlenzero:
 expiry:

See CSR fields for description of the fields.

Then run fabric-ca-client enroll command to enroll the identity. For example,
following command enrolls an identity whose ID is admin and password is adminpw
by calling Fabric CA server that is running locally at 7054 port.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client enroll -u http://admin:adminpw@localhost:7054

The enroll command stores an enrollment certificate (ECert), corresponding private key and CA
certificate chain PEM files in the subdirectories of the Fabric CA client’s msp directory.
You will see messages indicating where the PEM files are stored.

Registering a new identity

The identity performing the register request must be currently enrolled, and
must also have the proper authority to register the type of the identity that is being
registered.

In particular, three authorization checks are made by the Fabric CA server
during registration as follows:

	The registrar (i.e. the invoker) must have the “hf.Registrar.Roles” attribute with a
comma-separated list of values where one of the values equals the type of
identity being registered; for example, if the registrar has the
“hf.Registrar.Roles” attribute with a value of “peer,app,user”, the registrar
can register identities of type peer, app, and user, but not orderer.

	The affiliation of the registrar must be equal to or a prefix of
the affiliation of the identity being registered. For example, an registrar
with an affiliation of “a.b” may register an identity with an affiliation
of “a.b.c” but may not register an identity with an affiliation of “a.c”.
If root affiliation is required for an identity, then the affiliation request
should be a dot (”.”) and the registrar must also have root affiliation.
If no affiliation is specified in the registration request, the identity being
registered will be given the affiliation of the registrar.

	The registrar can register a user with attributes if all of the following conditions
are satisfied:
	Registrar can register Fabric CA reserved attributes that have the prefix ‘hf.’
only if the registrar possesses the attribute and it is part of the value of the
hf.Registrar.Attributes’ attribute. Furthermore, if the attribute is of type list
then the value of attribute being registered must be equal to or a subset of the
value that the registrar has. If the attribute is of type boolean, the registrar
can register the attribute only if the registrar’s value for the attribute is ‘true’.

	Registering custom attributes (i.e. any attribute whose name does not begin with ‘hf.’)
requires that the registrar has the ‘hf.Registar.Attributes’ attribute with the value of
the attribute or pattern being registered. The only supported pattern is a string with
a “*” at the end. For example, “a.b.*” is a pattern which matches all attribute names
beginning with “a.b.”. For example, if the registrar has hf.Registrar.Attributes=orgAdmin,
then the only attribute which the registrar can add or remove from an identity is the
‘orgAdmin’ attribute.

	If the requested attribute name is ‘hf.Registrar.Attributes’, an additional
check is performed to see if the requested values for this attribute are equal
to or a subset of the registrar’s values for ‘hf.Registrar.Attributes’. For this
to be true, each requested value must match a value in the registrar’s value for
‘hf.Registrar.Attributes’ attribute. For example, if the registrar’s value for
‘hf.Registrar.Attributes’ is ‘a.b.*, x.y.z’ and the requested attribute
value is ‘a.b.c, x.y.z’, it is valid because ‘a.b.c’ matches ‘a.b.*’ and ‘x.y.z’
matches the registrar’s ‘x.y.z’ value.

	Examples:

	
	Valid Scenarios:

	
	If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and
is registering attribute ‘a.b.c’, it is valid ‘a.b.c’ matches ‘a.b.*’.

	If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and
is registering attribute ‘x.y.z’, it is valid because ‘x.y.z’ matches the registrar’s
‘x.y.z’ value.

	If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and
the requested attribute value is ‘a.b.c, x.y.z’, it is valid because ‘a.b.c’ matches
‘a.b.*’ and ‘x.y.z’ matches the registrar’s ‘x.y.z’ value.

	If the registrar has the attribute ‘hf.Registrar.Roles = peer,client’ and
the requested attribute value is ‘peer’ or ‘peer,client’, it is valid because
the requested value is equal to or a subset of the registrar’s value.

	Invalid Scenarios:

	
	If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and
is registering attribute ‘hf.Registar.Attributes = a.b.c, x.y.*’, it is invalid
because requested attribute ‘x.y.*’ is not a pattern owned by the registrar. The value
‘x.y.*’ is a superset of ‘x.y.z’.

	If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and
is registering attribute ‘hf.Registar.Attributes = a.b.c, x.y.z, attr1’, it is invalid
because the registrar’s ‘hf.Registrar.Attributes’ attribute values do not contain ‘attr1’.

	If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and
is registering attribute ‘a.b’, it is invalid because the value ‘a.b’ is not contained in
‘a.b.*’.

	If the registrar has the attribute ‘hf.Registrar.Attributes = a.b.*, x.y.z’ and
is registering attribute ‘x.y’, it is invalid because ‘x.y’ is not contained by ‘x.y.z’.

	If the registrar has the attribute ‘hf.Registrar.Roles = peer,client’ and
the requested attribute value is ‘peer,client,orderer’, it is invalid because
the registrar does not have the orderer role in its value of hf.Registrar.Roles
attribute.

	If the registrar has the attribute ‘hf.Revoker = false’ and the requested attribute
value is ‘true’, it is invalid because the hf.Revoker attribute is a boolean attribute
and the registrar’s value for the attribute is not ‘true’.

The table below lists all the attributes that can be registered for an identity.
The names of attributes are case sensitive.

	Name
	Type
	Description

	hf.Registrar.Roles
	List
	List of roles that the registrar is allowed to manage

	hf.Registrar.DelegateRoles
	List
	List of roles that the registrar is allowed to give to a registree for its ‘hf.Registrar.Roles’ attribute

	hf.Registrar.Attributes
	List
	List of attributes that registrar is allowed to register

	hf.GenCRL
	Boolean
	Identity is able to generate CRL if attribute value is true

	hf.Revoker
	Boolean
	Identity is able to revoke a user and/or certificates if attribute value is true

	hf.AffiliationMgr
	Boolean
	Identity is able to manage affiliations if attribute value is true

	hf.IntermediateCA
	Boolean
	Identity is able to enroll as an intermediate CA if attribute value is true

Note: When registering an identity, you specify an array of attribute names and values. If the array
specifies multiple array elements with the same name, only the last element is currently used. In other words,
multi-valued attributes are not currently supported.

The following command uses the admin identity’s credentials to register a new
user with an enrollment id of “admin2”, an affiliation of
“org1.department1”, an attribute named “hf.Revoker” with a value of “true”, and
an attribute named “admin” with a value of “true”. The ”:ecert” suffix means that
by default the “admin” attribute and its value will be inserted into the user’s
enrollment certificate, which can then be used to make access control decisions.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name admin2 --id.affiliation org1.department1 --id.attrs 'hf.Revoker=true,admin=true:ecert'

The password, also known as the enrollment secret, is printed.
This password is required to enroll the identity.
This allows an administrator to register an identity and give the
enrollment ID and the secret to someone else to enroll the identity.

Multiple attributes can be specified as part of the –id.attrs flag, each
attribute must be comma separated. For an attribute value that contains a comma,
the attribute must be encapsulated in double quotes. See example below.

fabric-ca-client register -d --id.name admin2 --id.affiliation org1.department1 --id.attrs '"hf.Registrar.Roles=peer,user",hf.Revoker=true'

or

fabric-ca-client register -d --id.name admin2 --id.affiliation org1.department1 --id.attrs '"hf.Registrar.Roles=peer,user"' --id.attrs hf.Revoker=true

You may set default values for any of the fields used in the register command
by editing the client’s configuration file. For example, suppose the configuration
file contains the following:

id:
 name:
 type: user
 affiliation: org1.department1
 maxenrollments: -1
 attributes:
 - name: hf.Revoker
 value: true
 - name: anotherAttrName
 value: anotherAttrValue

The following command would then register a new identity with an enrollment id of
“admin3” which it takes from the command line, and the remainder is taken from the
configuration file including the identity type: “user”, affiliation: “org1.department1”,
and two attributes: “hf.Revoker” and “anotherAttrName”.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name admin3

To register an identity with multiple attributes requires specifying all attribute names and values
in the configuration file as shown above.

Setting maxenrollments to 0 or leaving it out from the configuration will result in the identity
being registered to use the CA’s max enrollment value. Furthermore, the max enrollment value for
an identity being registered cannot exceed the CA’s max enrollment value. For example, if the CA’s
max enrollment value is 5. Any new identity must have a value less than or equal to 5, and also
can’t set it to -1 (infinite enrollments).

Next, let’s register a peer identity which will be used to enroll the peer in the following section.
The following command registers the peer1 identity. Note that we choose to specify our own
password (or secret) rather than letting the server generate one for us.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name peer1 --id.type peer --id.affiliation org1.department1 --id.secret peer1pw

Note that affiliations are case sensitive except for the non-leaf affiliations that are specified in
the server configuration file, which are always stored in lower case. For example, if the affiliations
section of the server configuration file looks like this:

affiliations:
 BU1:
 Department1:
 - Team1
 BU2:
 - Department2
 - Department3

BU1, Department1, BU2 are stored in lower case. This is because Fabric CA uses Viper to read configuration.
Viper treats map keys as case insensitive and always returns lowercase value. To register an identity with
Team1 affiliation, bu1.department1.Team1 would need to be specified to the
–id.affiliation flag as shown below:

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client register --id.name client1 --id.type client --id.affiliation bu1.department1.Team1

Enrolling a peer identity

Now that you have successfully registered a peer identity, you may now
enroll the peer given the enrollment ID and secret (i.e. the password
from the previous section). This is similar to enrolling the bootstrap identity
except that we also demonstrate how to use the “-M” option to populate the
Hyperledger Fabric MSP (Membership Service Provider) directory structure.

The following command enrolls peer1.
Be sure to replace the value of the “-M” option with the path to your
peer’s MSP directory which is the
‘mspConfigPath’ setting in the peer’s core.yaml file.
You may also set the FABRIC_CA_CLIENT_HOME to the home directory of your peer.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/peer1
fabric-ca-client enroll -u http://peer1:peer1pw@localhost:7054 -M $FABRIC_CA_CLIENT_HOME/msp

Enrolling an orderer is the same, except the path to the MSP directory is
the ‘LocalMSPDir’ setting in your orderer’s orderer.yaml file.

All enrollment certificates issued by the fabric-ca-server have organizational
units (or “OUs” for short) as follows:

	The root of the OU hierarchy equals the identity type

	An OU is added for each component of the identity’s affiliation

For example, if an identity is of type peer and its affiliation is
department1.team1, the identity’s OU hierarchy (from leaf to root) is
OU=team1, OU=department1, OU=peer.

Getting a CA certificate chain from another Fabric CA server

In general, the cacerts directory of the MSP directory must contain the certificate authority chains
of other certificate authorities, representing all of the roots of trust for the peer.

The fabric-ca-client getcainfo command is used to retrieve these certificate chains from other
Fabric CA server instances.

For example, the following will start a second Fabric CA server on localhost
listening on port 7055 with a name of “CA2”. This represents a completely separate
root of trust and would be managed by a different member on the blockchain.

export FABRIC_CA_SERVER_HOME=$HOME/ca2
fabric-ca-server start -b admin:ca2pw -p 7055 -n CA2

The following command will install CA2’s certificate chain into peer1’s MSP directory.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/peer1
fabric-ca-client getcainfo -u http://localhost:7055 -M $FABRIC_CA_CLIENT_HOME/msp

By default, the Fabric CA server returns the CA chain in child-first order. This means that each CA
certificate in the chain is followed by its issuer’s CA certificate. If you need the Fabric CA server
to return the CA chain in the opposite order, then set the environment variable CA_CHAIN_PARENT_FIRST
to true and restart the Fabric CA server. The Fabric CA client will handle either order appropriately.

Reenrolling an Identity

Suppose your enrollment certificate is about to expire or has been compromised.
You can issue the reenroll command to renew your enrollment certificate as follows.

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/peer1
fabric-ca-client reenroll

Revoking a certificate or identity

An identity or a certificate can be revoked. Revoking an identity will revoke all
the certificates owned by the identity and will also prevent the identity from getting
any new certificates. Revoking a certificate will invalidate a single certificate.

In order to revoke a certificate or an identity, the calling identity must have
the hf.Revoker and hf.Registrar.Roles attribute. The revoking identity
can only revoke a certificate or an identity that has an affiliation that is
equal to or prefixed by the revoking identity’s affiliation. Furthermore, the
revoker can only revoke identities with types that are listed in the revoker’s
hf.Registrar.Roles attribute.

For example, a revoker with affiliation orgs.org1 and ‘hf.Registrar.Roles=peer,client’
attribute can revoke either a peer or client type identity affiliated with
orgs.org1 or orgs.org1.department1 but can’t revoke an identity affiliated with
orgs.org2 or of any other type.

The following command disables an identity and revokes all of the certificates
associated with the identity. All future requests received by the Fabric CA server
from this identity will be rejected.

fabric-ca-client revoke -e <enrollment_id> -r <reason>

The following are the supported reasons that can be specified using -r flag:

	unspecified

	keycompromise

	cacompromise

	affiliationchange

	superseded

	cessationofoperation

	certificatehold

	removefromcrl

	privilegewithdrawn

	aacompromise

For example, the bootstrap admin who is associated with root of the affiliation tree
can revoke peer1‘s identity as follows:

export FABRIC_CA_CLIENT_HOME=$HOME/fabric-ca/clients/admin
fabric-ca-client revoke -e peer1

An enrollment certificate that belongs to an identity can be revoked by
specifying its AKI (Authority Key Identifier) and serial number as follows:

fabric-ca-client revoke -a xxx -s yyy -r <reason>

For example, you can get the AKI and the serial number of a certificate using the openssl command
and pass them to the revoke command to revoke the said certificate as follows:

serial=$(openssl x509 -in userecert.pem -serial -noout | cut -d "=" -f 2)
aki=$(openssl x509 -in userecert.pem -text | awk '/keyid/ {gsub(/ *keyid:|:/,"",$1);print tolower($0)}')
fabric-ca-client revoke -s $serial -a $aki -r affiliationchange

The –gencrl flag can be used to generate a CRL (Certificate Revocation List) that contains all the revoked
certificates. For example, following command will revoke the identity peer1, generates a CRL and stores
it in the <msp folder>/crls/crl.pem file.

fabric-ca-client revoke -e peer1 --gencrl

A CRL can also be generated using the gencrl command. Refer to the Generating a CRL (Certificate Revocation List)
section for more information on the gencrl command.

Generating a CRL (Certificate Revocation List)

After a certificate is revoked in the Fabric CA server, the appropriate MSPs in Hyperledger Fabric must also be updated.
This includes both local MSPs of the peers as well as MSPs in the appropriate channel configuration blocks.
To do this, PEM encoded CRL (certificate revocation list) file must be placed in the crls
folder of the MSP. The fabric-ca-client gencrl command can be used to generate a CRL. Any identity
with hf.GenCRL attribute can create a CRL that contains serial numbers of all certificates that were revoked
during a certain period. The created CRL is stored in the <msp folder>/crls/crl.pem file.

The following command will create a CRL containing all the revoked certficates (expired and unexpired) and
store the CRL in the ~/msp/crls/crl.pem file.

export FABRIC_CA_CLIENT_HOME=~/clientconfig
fabric-ca-client gencrl -M ~/msp

The next command will create a CRL containing all certificates (expired and unexpired) that were revoked after
2017-09-13T16:39:57-08:00 (specified by the –revokedafter flag) and before 2017-09-21T16:39:57-08:00
(specified by the –revokedbefore flag) and store the CRL in the ~/msp/crls/crl.pem file.

export FABRIC_CA_CLIENT_HOME=~/clientconfig
fabric-ca-client gencrl --caname "" --revokedafter 2017-09-13T16:39:57-08:00 --revokedbefore 2017-09-21T16:39:57-08:00 -M ~/msp

The –caname flag specifies the name of the CA to which this request is sent. In this example, the gencrl request is
sent to the default CA.

The –revokedafter and –revokedbefore flags specify the lower and upper boundaries of a time period.
The generated CRL will contain certificates that were revoked in this time period. The values must be UTC
timestamps specified in RFC3339 format. The –revokedafter timestamp cannot be greater than the
–revokedbefore timestamp.

By default, ‘Next Update’ date of the CRL is set to next day. The crl.expiry CA configuration property
can be used to specify a custom value.

The gencrl command will also accept –expireafter and –expirebefore flags that can be used to generate a CRL
with revoked certificates that expire during the period specified by these flags. For example, the following command
will generate a CRL that contains certificates that were revoked after 2017-09-13T16:39:57-08:00 and
before 2017-09-21T16:39:57-08:00, and that expire after 2017-09-13T16:39:57-08:00 and before 2018-09-13T16:39:57-08:00

export FABRIC_CA_CLIENT_HOME=~/clientconfig
fabric-ca-client gencrl --caname "" --expireafter 2017-09-13T16:39:57-08:00 --expirebefore 2018-09-13T16:39:57-08:00 --revokedafter 2017-09-13T16:39:57-08:00 --revokedbefore 2017-09-21T16:39:57-08:00 -M ~/msp

The fabric-samples/fabric-ca [https://github.com/hyperledger/fabric-samples/blob/master/fabric-ca/scripts/run-fabric.sh]
sample demonstrates how to generate a CRL that contains certificate of a revoked user and update the channel
msp. It will then demonstrate that querying the channel using the revoked user credentials will result
in an authorization error.

Enabling TLS

This section describes in more detail how to configure TLS for a Fabric CA client.

The following sections may be configured in the fabric-ca-client-config.yaml.

tls:
 # Enable TLS (default: false)
 enabled: true
 certfiles:
 - root.pem
 client:
 certfile: tls_client-cert.pem
 keyfile: tls_client-key.pem

The certfiles option is the set of root certificates trusted by the
client. This will typically just be the root Fabric CA server’s
certificate found in the server’s home directory in the ca-cert.pem
file.

The client option is required only if mutual TLS is configured on
the server.

Attribute-Based Access Control

Access control decisions can be made by chaincode (and by the Hyperledger Fabric runtime)
based upon an identity’s attributes. This is called
Attribute-Based Access Control, or ABAC for short.

In order to make this possible, an identity’s enrollment certificate (ECert)
may contain one or more attribute name and value. The chaincode then
extracts an attribute’s value to make an access control decision.

For example, suppose that you are developing application app1 and want a
particular chaincode operation to be accessible only by app1 administrators.
Your chaincode could verify that the caller’s certificate (which was issued by
a CA trusted for the channel) contains an attribute named app1Admin with a
value of true. Of course the name of the attribute can be anything and the
value need not be a boolean value.

So how do you get an enrollment certificate with an attribute?
There are two methods:

	When you register an identity, you can specify that an enrollment certificate
issued for the identity should by default contain an attribute. This behavior
can be overridden at enrollment time, but this is useful for establishing
default behavior and, assuming registration occurs outside of your application,
does not require any application change.

The following shows how to register user1 with two attributes:
app1Admin and email.
The ”:ecert” suffix causes the appAdmin attribute to be inserted into user1’s
enrollment certificate by default, when the user does not explicitly request
attributes at enrollment time. The email attribute is not added
to the enrollment certificate by default.

fabric-ca-client register --id.name user1 --id.secret user1pw --id.type user --id.affiliation org1 --id.attrs 'app1Admin=true:ecert,email=user1@gmail.com'

	When you enroll an identity, you may explicitly request that one or more attributes
be added to the certificate.
For each attribute requested, you may specify whether the attribute is
optional or not. If it is not requested optionally and the identity does
not possess the attribute, an error will occur.

The following shows how to enroll user1 with the email attribute,
without the app1Admin attribute, and optionally with the phone
attribute (if the user possesses the phone attribute).

fabric-ca-client enroll -u http://user1:user1pw@localhost:7054 --enrollment.attrs "email,phone:opt"

The table below shows the three attributes which are automatically registered for every identity.

	Attribute Name
	Attribute Value

	hf.EnrollmentID
	The enrollment ID of the identity

	hf.Type
	The type of the identity

	hf.Affiliation
	The affiliation of the identity

To add any of the above attributes by default to a certificate, you must
explicitly register the attribute with the ”:ecert” specification.
For example, the following registers identity ‘user1’ so that
the ‘hf.Affiliation’ attribute will be added to an enrollment certificate if
no specific attributes are requested at enrollment time. Note that the
value of the affiliation (which is ‘org1’) must be the same in both the
‘–id.affiliation’ and the ‘–id.attrs’ flags.

fabric-ca-client register --id.name user1 --id.secret user1pw --id.type user --id.affiliation org1 --id.attrs 'hf.Affiliation=org1:ecert'

For information on the chaincode library API for Attribute-Based Access Control,
see https://github.com/hyperledger/fabric/tree/release-1.1/core/chaincode/lib/cid/README.md

For an end-to-end sample which demonstrates Attribute-Based Access Control and more,
see https://github.com/hyperledger/fabric-samples/tree/release-1.1/fabric-ca/README.md

Dynamic Server Configuration Update

This section describes how to use fabric-ca-client to dynamically update portions
of the fabric-ca-server’s configuration without restarting the server.

All commands in this section require that you first be enrolled by executing the
fabric-ca-client enroll command.

Dynamically updating identities

This section describes how to use fabric-ca-client to dynamically update identities.

An authorization failure will occur if the client identity does not satisfy all of the following:

	The client identity must possess the “hf.Registrar.Roles” attribute with a comma-separated list of
values where one of the values equals the type of identity being updated; for example, if the client’s
identity has the “hf.Registrar.Roles” attribute with a value of “client,peer”, the client can update
identities of type ‘client’ and ‘peer’, but not ‘orderer’.

	The affiliation of the client’s identity must be equal to or a prefix of the affiliation of the identity
being updated. For example, a client with an affiliation of “a.b” may update an identity with an affiliation
of “a.b.c” but may not update an identity with an affiliation of “a.c”. If root affiliation is required for an
identity, then the update request should specify a dot (”.”) for the affiliation and the client must also have
root affiliation.

The following shows how to add, modify, and remove an affiliation.

Getting Identity Information

A caller may retrieve information on a identity from the fabric-ca server as long as the caller meets
the authorization requirements highlighted in the section above. The following command shows how to get an
identity.

fabric-ca-client identity list --id user1

A caller may also request to retrieve information on all identities that it is authorized to see by
issuing the following command.

fabric-ca-client identity list

Adding an identity

The following adds a new identity for ‘user1’. Adding a new identity performs the same action as registering an
identity via the ‘fabric-ca-client register’ command. There are two available methods for adding a new identity.
The first method is via the –json flag where you describe the identity in a JSON string.

fabric-ca-client identity add user1 --json '{"secret": "user1pw", "type": "user", "affiliation": "org1", "max_enrollments": 1, "attrs": [{"name": "hf.Revoker", "value": "true"}]}'

The following adds a user with root affiliation. Note that an affiliation name of ”.” means the root affiliation.

fabric-ca-client identity add user1 --json '{"secret": "user1pw", "type": "user", "affiliation": ".", "max_enrollments": 1, "attrs": [{"name": "hf.Revoker", "value": "true"}]}'

The second method for adding an identity is to use direct flags. See the example below for adding ‘user1’.

fabric-ca-client identity add user1 --secret user1pw --type user --affiliation . --maxenrollments 1 --attrs hf.Revoker=true

The table below lists all the fields of an identity and whether they are required or optional, and any default values they might have.

	Fields
	Required
	Default Value

	ID
	Yes
	

	Secret
	No
	

	Affiliation
	No
	Caller’s Affiliation

	Type
	No
	client

	Maxenrollments
	No
	0

	Attributes
	No
	

Modifying an identity

There are two available methods for modifying an existing identity. The first method is via the –json flag where you describe
the modifications in to an identity in a JSON string. Multiple modifications can be made in a single request. Any element of an identity that
is not modified will retain its original value.

NOTE: A maxenrollments value of “-2” specifies that the CA’s max enrollment setting is to be used.

The command below make multiple modification to an identity using the –json flag.

fabric-ca-client identity modify user1 --json '{"secret": "newPassword", "affiliation": ".", "attrs": [{"name": "hf.Regisrar.Roles", "value": "peer,client"},{"name": "hf.Revoker", "value": "true"}]}'

The commands below make modifications using direct flags. The following updates the enrollment secret (or password) for identity ‘user1’ to ‘newsecret’.

fabric-ca-client identity modify user1 --secret newsecret

The following updates the affiliation of identity ‘user1’ to ‘org2’.

fabric-ca-client identity modify user1 --affiliation org2

The following updates the type of identity ‘user1’ to ‘peer’.

fabric-ca-client identity modify user1 --type peer

The following updates the maxenrollments of identity ‘user1’ to 5.

fabric-ca-client identity modify user1 --maxenrollments 5

By specifying a maxenrollments value of ‘-2’, the following causes identity ‘user1’ to use
the CA’s max enrollment setting.

fabric-ca-client identity modify user1 --maxenrollments -2

The following sets the value of the ‘hf.Revoker’ attribute for identity ‘user1’ to ‘false’.
If the identity has other attributes, they are not changed. If the identity did not previously
possess the ‘hf.Revoker’ attribute, the attribute is added to the identity. An attribute may
also be removed by specifying no value for the attribute.

fabric-ca-client identity modify user1 --attrs hf.Revoker=false

The following removes the ‘hf.Revoker’ attribute for user ‘user1’.

fabric-ca-client identity modify user1 --attrs hf.Revoker=

The following demonstrates that multiple options may be used in a single fabric-ca-client identity modify
command. In this case, both the secret and the type are updated for user ‘user1’.

fabric-ca-client identity modify user1 --secret newpass --type peer

Removing an identity

The following removes identity ‘user1’ and also revokes any certificates associated with the ‘user1’ identity.

fabric-ca-client identity remove user1

Note: Removal of identities is disabled in the fabric-ca-server by default, but may be enabled
by starting the fabric-ca-server with the –cfg.identities.allowremove option.

Dynamically updating affiliations

This section describes how to use fabric-ca-client to dynamically update affiliations. The
following shows how to add, modify, remove, and list an affiliation.

Adding an affiliation

An authorization failure will occur if the client identity does not satisfy all of the following:

	The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

	The affiliation of the client identity must be hierarchically above the affiliation being updated.
For example, if the client’s affiliation is “a.b”, the client may add affiliation “a.b.c” but not
“a” or “a.b”.

The following adds a new affiliation named ‘org1.dept1’.

fabric-ca-client affiliation add org1.dept1

Modifying an affiliation

An authorization failure will occur if the client identity does not satisfy all of the following:

	The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

	The affiliation of the client identity must be hierarchically above the affiliation being updated.
For example, if the client’s affiliation is “a.b”, the client may add affiliation “a.b.c” but not
“a” or “a.b”.

	If the ‘–force’ option is true and there are identities which must be modified, the client
identity must also be authorized to modify the identity.

The following renames the ‘org2’ affiliation to ‘org3’. It also renames any sub affiliations
(e.g. ‘org2.department1’ is renamed to ‘org3.department1’).

fabric-ca-client affiliation modify org2 --name org3

If there are identities that are affected by the renaming of an affiliation, it will result in
an error unless the ‘–force’ option is used. Using the ‘–force’ option will update the affiliation
of identities that are affected to use the new affiliation name.

fabric-ca-client affiliation modify org1 --name org2 --force

Removing an affiliation

An authorization failure will occur if the client identity does not satisfy all of the following:

	The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

	The affiliation of the client identity must be hierarchically above the affiliation being updated.
For example, if the client’s affiliation is “a.b”, the client may remove affiliation “a.b.c” but not
“a” or “a.b”.

	If the ‘–force’ option is true and there are identities which must be modified, the client
identity must also be authorized to modify the identity.

The following removes affiliation ‘org2’ and also any sub affiliations.
For example, if ‘org2.dept1’ is an affiliation below ‘org2’, it is also removed.

fabric-ca-client affiliation remove org2

If there are identities that are affected by the removing of an affiliation, it will result
in an error unless the ‘–force’ option is used. Using the ‘–force’ option will also remove
all identities that are associated with that affiliation, and the certificates associated with
any of these identities.

Note: Removal of affiliations is disabled in the fabric-ca-server by default, but may be enabled
by starting the fabric-ca-server with the –cfg.affiliations.allowremove option.

Listing affiliation information

An authorization failure will occur if the client identity does not satisfy all of the following:

	The client identity must possess the attribute ‘hf.AffiliationMgr’ with a value of ‘true’.

	Affiliation of the client identity must be equal to or be hierarchically above the
affiliation being updated. For example, if the client’s affiliation is “a.b”,
the client may get affiliation information on “a.b” or “a.b.c” but not “a” or “a.c”.

The following command shows how to get a specific affiliation.

fabric-ca-client affiliation list --affiliation org2.dept1

A caller may also request to retrieve information on all affiliations that it is authorized to see by
issuing the following command.

fabric-ca-client affiliation list

Manage Certificates

This section describes how to use fabric-ca-client to manage certificates.

Listing certificate information

The certificates that are visible to a caller include:

	Those certificates which belong to the caller

	If the caller possesses the hf.Registrar.Roles attribute or the hf.Revoker attribute with a value of true,
all certificates which belong to identities in and below the caller’s affiliation. For example, if the client’s
affiliation is a.b, the client may get certificates for identities who’s affiliation
is a.b or a.b.c but not a or a.c.

If executing a list command that requests certificates of more than one identity, only certificates of identities
with an affiliation that is equal to or hierarchically below the caller’s affiliation will be listed.

The certificates which will be listed may be filtered based on ID, AKI, serial number, expiration time, revocation time, notrevoked, and notexpired flags.

	id: List certificates for this enrollment ID

	serial: List certificates that have this serial number

	aki: List certificates that have this AKI

	expiration: List certificates that have expiration dates that fall within this expiration time

	revocation: List certificates that were revoked within this revocation time

	notrevoked: List certificates that have not yet been revoked

	notexpired: List certificates that have not yet expired

You can use flags notexpired and notrevoked as filters to exclude revoked certificates and/or expired certificates from the result set.
For example, if you only care about certificates that have expired but have not been revoked you can use the expiration and notrevoked flags to
get back such results. An example of this case is provided below.

Time should be specified based on RFC3339. For instance, to list certificates that have expirations between
March 1, 2018 at 1:00 PM and June 15, 2018 at 2:00 AM, the input time string would look like 2018-03-01T13:00:00z
and 2018-06-15T02:00:00z. If time is not a concern, and only the dates matter, then the time part can be left
off and then the strings become 2018-03-01 and 2018-06-15.

The string now may be used to denote the current time and the empty string to denote any time. For example, now:: denotes
a time range from now to any time in the future, and ::now denotes a time range from any time in the past until now.

The following command shows how to list certificates using various filters.

List all certificates:

fabric-ca-client certificate list

List all certificates by id:

fabric-ca-client certificate list --id admin

List certificate by serial and aki:

fabric-ca-client certificate list --serial 1234 --aki 1234

List certificate by id and serial/aki:

fabric-ca-client certificate list --id admin --serial 1234 --aki 1234

List certificates that are neither revoker nor expired by id:

fabric-ca-client certificate list --id admin --notrevoked --notexpired

List all certificates that have not been revoked for an id (admin):

fabric-ca-client certificate list --id admin --notrevoked

List all certificates have not expired for an id (admin):

The “–notexpired” flag is equivalent to “–expiration now::”, which means certificates
will expire some time in the future.

fabric-ca-client certificate list --id admin --notexpired

List all certificates that were revoked between a time range for an id (admin):

fabric-ca-client certificate list --id admin --revocation 2018-01-01T01:30:00z::2018-01-30T05:00:00z

List all certificates that were revoked between a time range but have not expired for an id (admin):

fabric-ca-client certificate list --id admin --revocation 2018-01-01::2018-01-30 --notexpired

List all revoked certificates using duration (revoked between 30 days and 15 days ago) for an id (admin):

fabric-ca-client certificate list --id admin --revocation -30d::-15d

List all revoked certificates before a time

fabric-ca-client certificate list --revocation ::2018-01-30

List all revoked certificates after a time

fabric-ca-client certificate list --revocation 2018-01-30::

List all revoked certificates before now and after a certain date

fabric-ca-client certificate list --id admin --revocation 2018-01-30::now

List all certificate that expired between a time range but have not been revoked for an id (admin):

fabric-ca-client certificate list --id admin --expiration 2018-01-01::2018-01-30 --notrevoked

List all expired certificates using duration (expired between 30 days and 15 days ago) for an id (admin):

fabric-ca-client certificate list --expiration -30d::-15d

List all certificates that have expired or will expire before a certain time

fabric-ca-client certificate list --expiration ::2058-01-30

List all certificates that have expired or will expire after a certain time

fabric-ca-client certificate list --expiration 2018-01-30::

List all expired certificates before now and after a certain date

fabric-ca-client certificate list --expiration 2018-01-30::now

List certificates expiring in the next 10 days:

fabric-ca-client certificate list --id admin --expiration ::+10d --notrevoked

The list certificate command can also be used to store certificates on the file
system. This is a convenient way to populate the admins folder in an MSP, The “-store” flag
points to the location on the file system to store the certificates.

Configure an identity to be an admin, by storing certificates for an identity
in the MSP:

export FABRIC_CA_CLIENT_HOME=/tmp/clientHome
fabric-ca-client certificate list --id admin --store msp/admincerts

Contact specific CA instance

When a server is running multiple CA instances, requests can be directed to a
specific CA. By default, if no CA name is specified in the client request the
request will be directed to the default CA on the fabric-ca server. A CA name
can be specified on the command line of a client command using the caname
filter as follows:

fabric-ca-client enroll -u http://admin:adminpw@localhost:7054 --caname <caname>

Back to Top

HSM

By default, the Fabric CA server and client store private keys in a PEM-encoded file,
but they can also be configured to store private keys in an HSM (Hardware Security Module)
via PKCS11 APIs. This behavior is configured in the BCCSP (BlockChain Crypto Service Provider)
section of the server’s or client’s configuration file.

Configuring Fabric CA server to use softhsm2

This section shows how to configure the Fabric CA server or client to use a software version
of PKCS11 called softhsm (see https://github.com/opendnssec/SoftHSMv2).

After installing softhsm, create a token, label it “ForFabric”, set the pin to ‘98765432’
(refer to softhsm documentation).

You can use both the config file and environment variables to configure BCCSP
For example, set the bccsp section of Fabric CA server configuration file as follows.
Note that the default field’s value is PKCS11.

###
BCCSP (BlockChain Crypto Service Provider) section is used to select which
crypto library implementation to use
###
bccsp:
 default: PKCS11
 pkcs11:
 Library: /usr/local/Cellar/softhsm/2.1.0/lib/softhsm/libsofthsm2.so
 Pin: 98765432
 Label: ForFabric
 hash: SHA2
 security: 256
 filekeystore:
 # The directory used for the software file-based keystore
 keystore: msp/keystore

And you can override relevant fields via environment variables as follows:

FABRIC_CA_SERVER_BCCSP_DEFAULT=PKCS11
FABRIC_CA_SERVER_BCCSP_PKCS11_LIBRARY=/usr/local/Cellar/softhsm/2.1.0/lib/softhsm/libsofthsm2.so
FABRIC_CA_SERVER_BCCSP_PKCS11_PIN=98765432
FABRIC_CA_SERVER_BCCSP_PKCS11_LABEL=ForFabric

Back to Top

File Formats

Fabric CA server’s configuration file format

A default configuration file is created in the server’s home directory
(see Fabric CA Server section for more info). The following
link shows a sample Server configuration file.

Fabric CA client’s configuration file format

A default configuration file is created in the client’s home directory
(see Fabric CA Client section for more info). The following
link shows a sample Client configuration file.

Back to Top

Troubleshooting

	If you see a Killed: 9 error on OSX when trying to execute
fabric-ca-client or fabric-ca-server, there is a long thread
describing this problem at https://github.com/golang/go/issues/19734.
The short answer is that to work around this issue, you can run the
following command:

sudo ln -s /usr/bin/true /usr/local/bin/dsymutil

	The error [ERROR] No certificates found for provided serial and aki will occur
if the following sequence of events occurs:

	You issue a fabric-ca-client enroll command, creating an enrollment certificate (i.e. an ECert).
This stores a copy of the ECert in the fabric-ca-server’s database.

	The fabric-ca-server’s database is deleted and recreated, thus losing the ECert from step ‘a’.
For example, this may happen if you stop and restart a docker container hosting the fabric-ca-server,
but your fabric-ca-server is using the default sqlite database and the database file is not stored
on a volume and is therefore not persistent.

	You issue a fabric-ca-client register command or any other command which tries to use the ECert from
step ‘a’. In this case, since the database no longer contains the ECert, the
[ERROR] No certificates found for provided serial and aki will occur.

To resolve this error, you must enroll again by repeating step ‘a’. This will issue a new ECert
which will be stored in the current database.

	When sending multiple parallel requests to a Fabric CA Server cluster that uses shared sqlite3 databases,
the server occasionally returns a ‘database locked’ error. This is most probably because the database
transaction timed out while waiting for database lock (held by another cluster member) to be released.
This is an invalid configuration because sqlite is an embedded database, which means the Fabric CA server
cluster must share the same file via a shared file system, which introduces a SPoF (single point of failure),
which contradicts the purpose of cluster topology. The best practice is to use either Postgres or MySQL
databases in a cluster topology.

	Suppose an error similar to
Failed to deserialize creator identity, err The supplied identity is not valid, Verify() returned x509: certificate signed by unknown authority
is returned by a peer or orderer when using an enrollment certificate issued by the Fabric CA Server. This indicates that
the signing CA certificate used by the Fabric CA Server to issue certificates does not match a certificate in the cacerts or intermediatecerts
folder of the MSP used to make authorization checks.

The MSP which is used to make authorization checks depends on which operation you were performing when the error occurred.
For example, if you were trying to install chaincode on a peer, the local MSP on the file system of the peer is used;
otherwise, if you were performing some channel specific operation such as instantiating chaincode on a specific channel,
the MSP in the genesis block or the most recent configuration block of the channel is used.

To confirm that this is the problem, compare the AKI (Authority Key Identifier) of the enrollment certificate
to the SKI (Subject Key Identifier) of the certificate(s) in the cacerts and intermediatecerts folder of appropriate MSP.
The command openssl x509 -in <PEM-file> -noout -text | grep -A1 “Authority Key Identifier” will display the AKI and
openssl x509 -in <PEM-file> -noout -text | grep -A1 “Subject Key Identifier” will display the SKI.
If they are not equal, you have confirmed that this is the cause of the error.

This can happen for multiple reasons including:

	You used cryptogen to generate your key material but did not start fabric-ca-server with the signing key and certificate generated
by cryptogen.

To resolve (assuming FABRIC_CA_SERVER_HOME is set to the home directory of your fabric-ca-server):

	Stop fabric-ca-server.

	Copy crypto-config/peerOrganizations/<orgName>/ca/*pem to $FABRIC_CA_SERVER_HOME/ca-cert.pem.

	Copy crypto-config/peerOrganizations/<orgName>/ca/*_sk to $FABRIC_CA_SERVER_HOME/msp/keystore/.

	Start fabric-ca-server.

	Delete any previously issued enrollment certificates and get new certificates by enrolling again.

	You deleted and recreated the CA signing key and certificate used by the Fabric CA Server after generating the genesis block.
This can happen if the Fabric CA Server is running in a docker container, the container was restarted, and its home directory
is not on a volume mount. In this case, the Fabric CA Server will create a new CA signing key and certificate.

Assuming that you can not recover the original CA signing key, the only way to recover from this scenario is to update the
certificate in the cacerts (or intermediatecerts) of the appropriate MSPs to the new CA certificate.

 Copyright 2017, hyperledger.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	hyperledger-fabric-cadocs master documentation

Index

 Copyright 2017, hyperledger.
 Created using Sphinx 1.4.4.

 servercli.html

 Navigation

 		
 index

 		hyperledger-fabric-cadocs master documentation »

Fabric-CA Server’s CLI

Hyperledger Fabric Certificate Authority Server

Usage:
 fabric-ca-server [command]

Available Commands:
 init Initialize the fabric-ca server
 start Start the fabric-ca server
 version Prints Fabric CA Server version

Flags:
 --address string Listening address of fabric-ca-server (default "0.0.0.0")
 -b, --boot string The user:pass for bootstrap admin which is required to build default config file
 --ca.certfile string PEM-encoded CA certificate file (default "ca-cert.pem")
 --ca.chainfile string PEM-encoded CA chain file (default "ca-chain.pem")
 --ca.keyfile string PEM-encoded CA key file
 -n, --ca.name string Certificate Authority name
 --cacount int Number of non-default CA instances
 --cafiles stringSlice A list of comma-separated CA configuration files
 --cfg.affiliations.allowremove Enables removal of affiliations dynamically
 --cfg.identities.allowremove Enables removal of identities dynamically
 --crl.expiry duration Expiration for the CRL generated by the gencrl request (default 24h0m0s)
 --crlsizelimit int Size limit of an acceptable CRL in bytes (default 512000)
 --csr.cn string The common name field of the certificate signing request to a parent fabric-ca-server
 --csr.hosts stringSlice A list of space-separated host names in a certificate signing request to a parent fabric-ca-server
 --csr.serialnumber string The serial number in a certificate signing request to a parent fabric-ca-server
 --db.datasource string Data source which is database specific (default "fabric-ca-server.db")
 --db.tls.certfiles stringSlice A list of comma-separated PEM-encoded trusted certificate files (e.g. root1.pem,root2.pem)
 --db.tls.client.certfile string PEM-encoded certificate file when mutual authenticate is enabled
 --db.tls.client.keyfile string PEM-encoded key file when mutual authentication is enabled
 --db.type string Type of database; one of: sqlite3, postgres, mysql (default "sqlite3")
 -d, --debug Enable debug level logging
 -H, --home string Server's home directory (default "/etc/hyperledger/fabric-ca")
 --intermediate.enrollment.label string Label to use in HSM operations
 --intermediate.enrollment.profile string Name of the signing profile to use in issuing the certificate
 --intermediate.enrollment.type string The type of enrollment request (default "x509")
 --intermediate.parentserver.caname string Name of the CA to connect to on fabric-ca-server
 -u, --intermediate.parentserver.url string URL of the parent fabric-ca-server (e.g. http://<username>:<password>@<address>:<port)
 --intermediate.tls.certfiles stringSlice A list of comma-separated PEM-encoded trusted certificate files (e.g. root1.pem,root2.pem)
 --intermediate.tls.client.certfile string PEM-encoded certificate file when mutual authenticate is enabled
 --intermediate.tls.client.keyfile string PEM-encoded key file when mutual authentication is enabled
 --ldap.attribute.names stringSlice The names of LDAP attributes to request on an LDAP search
 --ldap.enabled Enable the LDAP client for authentication and attributes
 --ldap.groupfilter string The LDAP group filter for a single affiliation group (default "(memberUid=%s)")
 --ldap.tls.certfiles stringSlice A list of comma-separated PEM-encoded trusted certificate files (e.g. root1.pem,root2.pem)
 --ldap.tls.client.certfile string PEM-encoded certificate file when mutual authenticate is enabled
 --ldap.tls.client.keyfile string PEM-encoded key file when mutual authentication is enabled
 --ldap.url string LDAP client URL of form ldap://adminDN:adminPassword@host[:port]/base
 --ldap.userfilter string The LDAP user filter to use when searching for users (default "(uid=%s)")
 -p, --port int Listening port of fabric-ca-server (default 7054)
 --registry.maxenrollments int Maximum number of enrollments; valid if LDAP not enabled (default -1)
 --tls.certfile string PEM-encoded TLS certificate file for server's listening port (default "tls-cert.pem")
 --tls.clientauth.certfiles stringSlice A list of comma-separated PEM-encoded trusted certificate files (e.g. root1.pem,root2.pem)
 --tls.clientauth.type string Policy the server will follow for TLS Client Authentication. (default "noclientcert")
 --tls.enabled Enable TLS on the listening port
 --tls.keyfile string PEM-encoded TLS key for server's listening port

Use "fabric-ca-server [command] --help" for more information about a command.

 © Copyright 2017, hyperledger.
 Created using Sphinx 1.4.4.

_static/comment-close.png

serverconfig.html

 Navigation

 		
 index

 		hyperledger-fabric-cadocs master documentation »

Fabric-CA Server’s Configuration File

###
This is a configuration file for the fabric-ca-server command.
#
COMMAND LINE ARGUMENTS AND ENVIRONMENT VARIABLES
--
Each configuration element can be overridden via command line
arguments or environment variables. The precedence for determining
the value of each element is as follows:
1) command line argument
Examples:
a) --port 443
To set the listening port
b) --ca.keyfile ../mykey.pem
To set the "keyfile" element in the "ca" section below;
note the '.' separator character.
2) environment variable
Examples:
a) FABRIC_CA_SERVER_PORT=443
To set the listening port
b) FABRIC_CA_SERVER_CA_KEYFILE="../mykey.pem"
To set the "keyfile" element in the "ca" section below;
note the '_' separator character.
3) configuration file
4) default value (if there is one)
All default values are shown beside each element below.
#
FILE NAME ELEMENTS

The value of all fields whose name ends with "file" or "files" are
name or names of other files.
For example, see "tls.certfile" and "tls.clientauth.certfiles".
The value of each of these fields can be a simple filename, a
relative path, or an absolute path. If the value is not an
absolute path, it is interpretted as being relative to the location
of this configuration file.
#
###

Version of config file
version: <<<VERSION>>>

Server's listening port (default: 7054)
port: 7054

Enables debug logging (default: false)
debug: false

Size limit of an acceptable CRL in bytes (default: 512000)
crlsizelimit: 512000

###
TLS section for the server's listening port
#
The following types are supported for client authentication: NoClientCert,
RequestClientCert, RequireAnyClientCert, VerifyClientCertIfGiven,
and RequireAndVerifyClientCert.
#
Certfiles is a list of root certificate authorities that the server uses
when verifying client certificates.
###
tls:
 # Enable TLS (default: false)
 enabled: false
 # TLS for the server's listening port
 certfile:
 keyfile:
 clientauth:
 type: noclientcert
 certfiles:

###
The CA section contains information related to the Certificate Authority
including the name of the CA, which should be unique for all members
of a blockchain network. It also includes the key and certificate files
used when issuing enrollment certificates (ECerts) and transaction
certificates (TCerts).
The chainfile (if it exists) contains the certificate chain which
should be trusted for this CA, where the 1st in the chain is always the
root CA certificate.
###
ca:
 # Name of this CA
 name:
 # Key file (is only used to import a private key into BCCSP)
 keyfile:
 # Certificate file (default: ca-cert.pem)
 certfile:
 # Chain file
 chainfile:

###
The gencrl REST endpoint is used to generate a CRL that contains revoked
certificates. This section contains configuration options that are used
during gencrl request processing.
###
crl:
 # Specifies expiration for the generated CRL. The number of hours
 # specified by this property is added to the UTC time, the resulting time
 # is used to set the 'Next Update' date of the CRL.
 expiry: 24h

###
The registry section controls how the fabric-ca-server does two things:
1) authenticates enrollment requests which contain a username and password
(also known as an enrollment ID and secret).
2) once authenticated, retrieves the identity's attribute names and
values which the fabric-ca-server optionally puts into TCerts
which it issues for transacting on the Hyperledger Fabric blockchain.
These attributes are useful for making access control decisions in
chaincode.
There are two main configuration options:
1) The fabric-ca-server is the registry.
This is true if "ldap.enabled" in the ldap section below is false.
2) An LDAP server is the registry, in which case the fabric-ca-server
calls the LDAP server to perform these tasks.
This is true if "ldap.enabled" in the ldap section below is true,
which means this "registry" section is ignored.
###
registry:
 # Maximum number of times a password/secret can be reused for enrollment
 # (default: -1, which means there is no limit)
 maxenrollments: -1

 # Contains identity information which is used when LDAP is disabled
 identities:
 - name: <<<adminUserName>>>
 pass: <<<adminPassword>>>
 type: client
 affiliation: ""
 attrs:
 hf.Registrar.Roles: "*"
 hf.Registrar.DelegateRoles: "*"
 hf.Revoker: true
 hf.IntermediateCA: true
 hf.GenCRL: true
 hf.Registrar.Attributes: "*"
 hf.AffiliationMgr: true

###
Database section
Supported types are: "sqlite3", "postgres", and "mysql".
The datasource value depends on the type.
If the type is "sqlite3", the datasource value is a file name to use
as the database store. Since "sqlite3" is an embedded database, it
may not be used if you want to run the fabric-ca-server in a cluster.
To run the fabric-ca-server in a cluster, you must choose "postgres"
or "mysql".
###
db:
 type: sqlite3
 datasource: fabric-ca-server.db
 tls:
 enabled: false
 certfiles:
 client:
 certfile:
 keyfile:

###
LDAP section
If LDAP is enabled, the fabric-ca-server calls LDAP to:
1) authenticate enrollment ID and secret (i.e. username and password)
for enrollment requests;
2) To retrieve identity attributes
###
ldap:
 # Enables or disables the LDAP client (default: false)
 # If this is set to true, the "registry" section is ignored.
 enabled: false
 # The URL of the LDAP server
 url: ldap://<adminDN>:<adminPassword>@<host>:<port>/<base>
 # TLS configuration for the client connection to the LDAP server
 tls:
 certfiles:
 client:
 certfile:
 keyfile:
 # Attribute related configuration for mapping from LDAP entries to Fabric CA attributes
 attribute:
 # 'names' is an array of strings containing the LDAP attribute names which are
 # requested from the LDAP server for an LDAP identity's entry
 names: ['uid','member']
 # The 'converters' section is used to convert an LDAP entry to the value of
 # a fabric CA attribute.
 # For example, the following converts an LDAP 'uid' attribute
 # whose value begins with 'revoker' to a fabric CA attribute
 # named "hf.Revoker" with a value of "true" (because the boolean expression
 # evaluates to true).
 # converters:
 # - name: hf.Revoker
 # value: attr("uid") =~ "revoker*"
 converters:
 - name:
 value:
 # The 'maps' section contains named maps which may be referenced by the 'map'
 # function in the 'converters' section to map LDAP responses to arbitrary values.
 # For example, assume a user has an LDAP attribute named 'member' which has multiple
 # values which are each a distinguished name (i.e. a DN). For simplicity, assume the
 # values of the 'member' attribute are 'dn1', 'dn2', and 'dn3'.
 # Further assume the following configuration.
 # converters:
 # - name: hf.Registrar.Roles
 # value: map(attr("member"),"groups")
 # maps:
 # groups:
 # - name: dn1
 # value: peer
 # - name: dn2
 # value: client
 # The value of the user's 'hf.Registrar.Roles' attribute is then computed to be
 # "peer,client,dn3". This is because the value of 'attr("member")' is
 # "dn1,dn2,dn3", and the call to 'map' with a 2nd argument of
 # "group" replaces "dn1" with "peer" and "dn2" with "client".
 maps:
 groups:
 - name:
 value:

###
Affiliations section. Fabric CA server can be bootstrapped with the
affiliations specified in this section. Affiliations are specified as maps.
For example:
businessunit1:
department1:
- team1
businessunit2:
- department2
- department3
#
Affiliations are hierarchical in nature. In the above example,
department1 (used as businessunit1.department1) is the child of businessunit1.
team1 (used as businessunit1.department1.team1) is the child of department1.
department2 (used as businessunit2.department2) and department3 (businessunit2.department3)
are children of businessunit2.
Note: Affiliations are case sensitive except for the non-leaf affiliations
(like businessunit1, department1, businessunit2) that are specified in the configuration file,
which are always stored in lower case.
###
affiliations:
 org1:
 - department1
 - department2
 org2:
 - department1

###
Signing section
#
The "default" subsection is used to sign enrollment certificates;
the default expiration ("expiry" field) is "8760h", which is 1 year in hours.
#
The "ca" profile subsection is used to sign intermediate CA certificates;
the default expiration ("expiry" field) is "43800h" which is 5 years in hours.
Note that "isca" is true, meaning that it issues a CA certificate.
A maxpathlen of 0 means that the intermediate CA cannot issue other
intermediate CA certificates, though it can still issue end entity certificates.
(See RFC 5280, section 4.2.1.9)
#
The "tls" profile subsection is used to sign TLS certificate requests;
the default expiration ("expiry" field) is "8760h", which is 1 year in hours.
###
signing:
 default:
 usage:
 - digital signature
 expiry: 8760h
 profiles:
 ca:
 usage:
 - cert sign
 - crl sign
 expiry: 43800h
 caconstraint:
 isca: true
 maxpathlen: 0
 tls:
 usage:
 - signing
 - key encipherment
 - server auth
 - client auth
 - key agreement
 expiry: 8760h

###
Certificate Signing Request (CSR) section.
This controls the creation of the root CA certificate.
The expiration for the root CA certificate is configured with the
"ca.expiry" field below, whose default value is "131400h" which is
15 years in hours.
The pathlength field is used to limit CA certificate hierarchy as described
in section 4.2.1.9 of RFC 5280.
Examples:
1) No pathlength value means no limit is requested.
2) pathlength == 1 means a limit of 1 is requested which is the default for
a root CA. This means the root CA can issue intermediate CA certificates,
but these intermediate CAs may not in turn issue other CA certificates
though they can still issue end entity certificates.
3) pathlength == 0 means a limit of 0 is requested;
this is the default for an intermediate CA, which means it can not issue
CA certificates though it can still issue end entity certificates.
###
csr:
 cn: <<<COMMONNAME>>>
 names:
 - C: US
 ST: "North Carolina"
 L:
 O: Hyperledger
 OU: Fabric
 hosts:
 - <<<MYHOST>>>
 - localhost
 ca:
 expiry: 131400h
 pathlength: <<<PATHLENGTH>>>

###
BCCSP (BlockChain Crypto Service Provider) section is used to select which
crypto library implementation to use
###
bccsp:
 default: SW
 sw:
 hash: SHA2
 security: 256
 filekeystore:
 # The directory used for the software file-based keystore
 keystore: msp/keystore

###
Multi CA section
#
Each Fabric CA server contains one CA by default. This section is used
to configure multiple CAs in a single server.
#
1) --cacount <number-of-CAs>
Automatically generate <number-of-CAs> non-default CAs. The names of these
additional CAs are "ca1", "ca2", ... "caN", where "N" is <number-of-CAs>
This is particularly useful in a development environment to quickly set up
multiple CAs. Note that, this config option is not applicable to intermediate CA server
i.e., Fabric CA server that is started with intermediate.parentserver.url config
option (-u command line option)
#
2) --cafiles <CA-config-files>
For each CA config file in the list, generate a separate signing CA. Each CA
config file in this list MAY contain all of the same elements as are found in
the server config file except port, debug, and tls sections.
#
Examples:
fabric-ca-server start -b admin:adminpw --cacount 2
#
fabric-ca-server start -b admin:adminpw --cafiles ca/ca1/fabric-ca-server-config.yaml
--cafiles ca/ca2/fabric-ca-server-config.yaml
#
###

cacount:

cafiles:

###
Intermediate CA section
#
The relationship between servers and CAs is as follows:
1) A single server process may contain or function as one or more CAs.
This is configured by the "Multi CA section" above.
2) Each CA is either a root CA or an intermediate CA.
3) Each intermediate CA has a parent CA which is either a root CA or another intermediate CA.
#
This section pertains to configuration of #2 and #3.
If the "intermediate.parentserver.url" property is set,
then this is an intermediate CA with the specified parent
CA.
#
parentserver section
url - The URL of the parent server
caname - Name of the CA to enroll within the server
#
enrollment section used to enroll intermediate CA with parent CA
profile - Name of the signing profile to use in issuing the certificate
label - Label to use in HSM operations
#
tls section for secure socket connection
certfiles - PEM-encoded list of trusted root certificate files
client:
certfile - PEM-encoded certificate file for when client authentication
is enabled on server
keyfile - PEM-encoded key file for when client authentication
is enabled on server
###
intermediate:
 parentserver:
 url:
 caname:

 enrollment:
 hosts:
 profile:
 label:

 tls:
 certfiles:
 client:
 certfile:
 keyfile:

 © Copyright 2017, hyperledger.
 Created using Sphinx 1.4.4.

_static/down-pressed.png

_static/comment-bright.png

clientconfig.html

 Navigation

 		
 index

 		hyperledger-fabric-cadocs master documentation »

Fabric-CA Client’s Configuration File

###
This is a configuration file for the fabric-ca-client command.
#
COMMAND LINE ARGUMENTS AND ENVIRONMENT VARIABLES
--
Each configuration element can be overridden via command line
arguments or environment variables. The precedence for determining
the value of each element is as follows:
1) command line argument
Examples:
a) --url https://localhost:7054
To set the fabric-ca server url
b) --tls.client.certfile certfile.pem
To set the client certificate for TLS
2) environment variable
Examples:
a) FABRIC_CA_CLIENT_URL=https://localhost:7054
To set the fabric-ca server url
b) FABRIC_CA_CLIENT_TLS_CLIENT_CERTFILE=certfile.pem
To set the client certificate for TLS
3) configuration file
4) default value (if there is one)
All default values are shown beside each element below.
#
FILE NAME ELEMENTS

The value of all fields whose name ends with "file" or "files" are
name or names of other files.
For example, see "tls.certfiles" and "tls.client.certfile".
The value of each of these fields can be a simple filename, a
relative path, or an absolute path. If the value is not an
absolute path, it is interpretted as being relative to the location
of this configuration file.
#
###

###
Client Configuration
###

URL of the Fabric-ca-server (default: http://localhost:7054)
url: <<<URL>>>

Membership Service Provider (MSP) directory
This is useful when the client is used to enroll a peer or orderer, so
that the enrollment artifacts are stored in the format expected by MSP.
mspdir: msp

###
TLS section for secure socket connection
#
certfiles - PEM-encoded list of trusted root certificate files
client:
certfile - PEM-encoded certificate file for when client authentication
is enabled on server
keyfile - PEM-encoded key file for when client authentication
is enabled on server
###
tls:
 # TLS section for secure socket connection
 certfiles:
 client:
 certfile:
 keyfile:

###
Certificate Signing Request section for generating the CSR for an
enrollment certificate (ECert)
#
cn - Used by CAs to determine which domain the certificate is to be generated for
#
serialnumber - The serialnumber field, if specified, becomes part of the issued
certificate's DN (Distinguished Name). For example, one use case for this is
a company with its own CA (Certificate Authority) which issues certificates
to its employees and wants to include the employee's serial number in the DN
of its issued certificates.
WARNING: The serialnumber field should not be confused with the certificate's
serial number which is set by the CA but is not a component of the
certificate's DN.
#
names - A list of name objects. Each name object should contain at least one
"C", "L", "O", or "ST" value (or any combination of these) where these
are abbreviations for the following:
"C": country
"L": locality or municipality (such as city or town name)
"O": organization
"OU": organizational unit, such as the department responsible for owning the key;
it can also be used for a "Doing Business As" (DBS) name
"ST": the state or province
#
Note that the "OU" or organizational units of an ECert are always set according
to the values of the identities type and affiliation. OUs are calculated for an enroll
as OU=<type>, OU=<affiliationRoot>, ..., OU=<affiliationLeaf>. For example, an identity
of type "client" with an affiliation of "org1.dept2.team3" would have the following
organizational units: OU=client, OU=org1, OU=dept2, OU=team3
#
hosts - A list of host names for which the certificate should be valid
#
###
csr:
 cn: <<<ENROLLMENT_ID>>>
 serialnumber:
 names:
 - C: US
 ST: North Carolina
 L:
 O: Hyperledger
 OU: Fabric
 hosts:
 - <<<MYHOST>>>

###
Registration section used to register a new identity with fabric-ca server
#
name - Unique name of the identity
type - Type of identity being registered (e.g. 'peer, app, user')
affiliation - The identity's affiliation
maxenrollments - The maximum number of times the secret can be reused to enroll.
Specially, -1 means unlimited; 0 means to use CA's max enrollment
value.
attributes - List of name/value pairs of attribute for identity
###
id:
 name:
 type:
 affiliation:
 maxenrollments: 0
 attributes:
 # - name:
 # value:

###
Enrollment section used to enroll an identity with fabric-ca server
#
profile - Name of the signing profile to use in issuing the certificate
label - Label to use in HSM operations
###
enrollment:
 profile:
 label:

###
Name of the CA to connect to within the fabric-ca server
###
caname:

###
BCCSP (BlockChain Crypto Service Provider) section allows to select which
crypto implementation library to use
###
bccsp:
 default: SW
 sw:
 hash: SHA2
 security: 256
 filekeystore:
 # The directory used for the software file-based keystore
 keystore: msp/keystore

 © Copyright 2017, hyperledger.
 Created using Sphinx 1.4.4.

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/fabric-ca.png
Cluster of
Fabric-CA Servers

Fabric-CA
Root Server

Fabric-CA
Intermediate Server

/apiivi/cfssi/enroll

7

Fabric-CA
client

-

Blockchain

_static/file.png

clientcli.html

 Navigation

 		
 index

 		hyperledger-fabric-cadocs master documentation »

Fabric-CA Client’s CLI

Hyperledger Fabric Certificate Authority Client

Usage:
 fabric-ca-client [command]

Available Commands:
 affiliation Manage affiliations
 certificate Manage certificates
 enroll Enroll an identity
 gencrl Generate a CRL
 gencsr Generate a CSR
 getcainfo Get CA certificate chain and Idemix public key
 identity Manage identities
 reenroll Reenroll an identity
 register Register an identity
 revoke Revoke an identity
 version Prints Fabric CA Client version

Flags:
 --caname string Name of CA
 --csr.cn string The common name field of the certificate signing request
 --csr.hosts stringSlice A list of space-separated host names in a certificate signing request
 --csr.names stringSlice A list of comma-separated CSR names of the form <name>=<value> (e.g. C=CA,O=Org1)
 --csr.serialnumber string The serial number in a certificate signing request
 -d, --debug Enable debug level logging
 --enrollment.attrs stringSlice A list of comma-separated attribute requests of the form <name>[:opt] (e.g. foo,bar:opt)
 --enrollment.label string Label to use in HSM operations
 --enrollment.profile string Name of the signing profile to use in issuing the certificate
 --enrollment.type string The type of enrollment request (default "x509")
 -H, --home string Client's home directory (default "$HOME/.fabric-ca-client")
 --id.affiliation string The identity's affiliation
 --id.attrs stringSlice A list of comma-separated attributes of the form <name>=<value> (e.g. foo=foo1,bar=bar1)
 --id.maxenrollments int The maximum number of times the secret can be reused to enroll (default CA's Max Enrollment)
 --id.name string Unique name of the identity
 --id.secret string The enrollment secret for the identity being registered
 --id.type string Type of identity being registered (e.g. 'peer, app, user') (default "client")
 -M, --mspdir string Membership Service Provider directory (default "msp")
 -m, --myhost string Hostname to include in the certificate signing request during enrollment (default "$HOSTNAME")
 -a, --revoke.aki string AKI (Authority Key Identifier) of the certificate to be revoked
 -e, --revoke.name string Identity whose certificates should be revoked
 -r, --revoke.reason string Reason for revocation
 -s, --revoke.serial string Serial number of the certificate to be revoked
 --tls.certfiles stringSlice A list of comma-separated PEM-encoded trusted certificate files (e.g. root1.pem,root2.pem)
 --tls.client.certfile string PEM-encoded certificate file when mutual authenticate is enabled
 --tls.client.keyfile string PEM-encoded key file when mutual authentication is enabled
 -u, --url string URL of fabric-ca-server (default "http://localhost:7054")

Use "fabric-ca-client [command] --help" for more information about a command.

Identity Command

Manage identities

Usage:
 fabric-ca-client identity [command]

Available Commands:
 add Add identity
 list List identities
 modify Modify identity
 remove Remove identity

Add an identity

Usage:
 fabric-ca-client identity add <id> [flags]

Examples:
fabric-ca-client identity add user1 --type peer

Flags:
 --affiliation string The identity's affiliation
 --attrs stringSlice A list of comma-separated attributes of the form <name>=<value> (e.g. foo=foo1,bar=bar1)
 --json string JSON string for adding a new identity
 --maxenrollments int The maximum number of times the secret can be reused to enroll (default CA's Max Enrollment)
 --secret string The enrollment secret for the identity being added
 --type string Type of identity being registered (e.g. 'peer, app, user') (default "user")

List identities visible to caller

Usage:
 fabric-ca-client identity list [flags]

Flags:
 --id string Get identity information from the fabric-ca server

Modify an existing identity

Usage:
 fabric-ca-client identity modify <id> [flags]

Examples:
fabric-ca-client identity modify user1 --type peer

Flags:
 --affiliation string The identity's affiliation
 --attrs stringSlice A list of comma-separated attributes of the form <name>=<value> (e.g. foo=foo1,bar=bar1)
 --json string JSON string for modifying an existing identity
 --maxenrollments int The maximum number of times the secret can be reused to enroll
 --secret string The enrollment secret for the identity
 --type string Type of identity being registered (e.g. 'peer, app, user')

Remove an identity

Usage:
 fabric-ca-client identity remove <id> [flags]

Examples:
fabric-ca-client identity remove user1

Flags:
 --force Forces removing your own identity

Affiliation Command

Manage affiliations

Usage:
 fabric-ca-client affiliation [command]

Available Commands:
 add Add affiliation
 list List affiliations
 modify Modify affiliation
 remove Remove affiliation

Add affiliation

Usage:
 fabric-ca-client affiliation add <affiliation> [flags]

Flags:
 --force Creates parent affiliations if they do not exist

List affiliations visible to caller

Usage:
 fabric-ca-client affiliation list [flags]

Flags:
 --affiliation string Get affiliation information from the fabric-ca server

Modify existing affiliation

Usage:
 fabric-ca-client affiliation modify <affiliation> [flags]

Flags:
 --force Forces identities using old affiliation to use new affiliation
 --name string Rename the affiliation

Remove affiliation

Usage:
 fabric-ca-client affiliation remove <affiliation> [flags]

Flags:
 --force Forces removal of any child affiliations and any identities associated with removed affiliations

Certificate Command

Manage certificates

Usage:
 fabric-ca-client certificate [command]

Available Commands:
 list List certificates

List all certificates which are visible to the caller and match the flags

Usage:
 fabric-ca-client certificate list [flags]

Examples:
fabric-ca-client certificate list --id admin --expiration 2018-01-01::2018-01-30
fabric-ca-client certificate list --id admin --expiration 2018-01-01T01:30:00z::2018-01-30T11:30:00z
fabric-ca-client certificate list --id admin --expiration -30d::-15d

Flags:
 --aki string Get certificates for this AKI
 --expiration string Get certificates which expire between the UTC timestamp (RFC3339 format) or duration specified (e.g. <begin_time>::<end_time>)
 --id string Get certificates for this enrollment ID
 --notexpired Don't return expired certificates
 --notrevoked Don't return revoked certificates
 --revocation string Get certificates that were revoked between the UTC timestamp (RFC3339 format) or duration specified (e.g. <begin_time>::<end_time>)
 --serial string Get certificates for this serial number
 --store string Store requested certificates in this location

 © Copyright 2017, hyperledger.
 Created using Sphinx 1.4.4.

_static/up.png

